Finding the Right Tool for your Purpose

Using Data to Show Improvement and the Need for Improvement

Data

- Why does it matter?
- Why do we use it?
- Why don't we use it?
- How can we make the most of it?

What is the story that you want to tell?

- What kind of data do you need to tell that story?
 - Incremental data over time
 - Point-in-time snapshot
 - Exact measures or averages or ranges

Using data to drive improvement

- What is the problem?
- How do you know that it's a problem?
- Is the problem obvious to everyone?
- Is the problem important and relevant?
- Can you prove that it's a problem?

Using data to illustrate the problem

- What do you know?
- What do you want others to know?
- What do you want others to decide?

Selecting the right tool

- Radar Charts
- Pareto Diagrams
- Histograms

Radar Chart

The Measures Capture the Important Components of the Standards

What does it do?

- Displays important categories of performance
- Defines full performance for each category
- Shows gaps between current and full performance
- Captures range of perceptions about performance
- Provides data to support priorities for improving performance

How to do it?

- Assemble the right team
- Select and define rating categories
- Rate each category
- Connect the team ratings
- Create the Chart (Excel will do it for you)

	Easy	Fairly Easy	Fairly Difficult	Diffic ult	Can't acces s
Tobacco use	9.75	11	8.25	7.5	8
BMI	8.5	7.5	10	10	7
Physical activity level	10.5	10	7	8.5	7.5
Diet	7	9.25	11.5	11	10.25

During routine clinical or home visits, how easy is it to access the following patient information

Interpretation

- Identify the biggest gaps in performance
- Identify the most critical categories of performance
- Focus on the biggest gaps in the most critical categories

Pareto Diagrams

Reasons for Appointment No-Shows

Pareto Diagrams

Rate of Appointment No-Shows

What does it do?

- Focuses attention on most significant causes
- Displays relative importance of different causes
- Prevents shifting the problem to other causes
- Allows for ongoing measurement of progress

How to do it?

Identify the problem

Average Distance (meters) to Stores with Healthy Food				
Clermont	150			
Hamilton	130			
Jefferson	100			
Lucas	80			
Mahonig	75			

- Select the aspect of the problem that will be reviewed
- Choose the most meaningful unit of measurement
- Decide on the time period for the measurement
- Compile the data
- Create the chart (Excel will do it for you)

Average Distance (meters) to Stores with Healthy Food

Before and after

Average Distance (meters) to Stores with Healthy Food

Interpretation

- Tallest bars indicate the biggest contributors to the overall problem (as a general rule)
- Focus your improvement strategy on what will make the biggest difference to your audience or stakeholders

BMI for Patients in Primary Care Clinic

What does it do?

- Displays large amounts of data in visual format
- Shows relative frequency of various data values
- Illustrates underlying distribution of the data
- Provides information for predicting future performance
- Reveals the shape and variation of the data

How to do it?

- Decide on the indicator to be measured
- Collect at least 50 data points
- Prepare a frequency table from the data
- Group the data into intervals
- Create the histogram

Time to Finalize Contract				
Number of weeks	Frequency			
1-3	1			
4-6	6			
7-9	7			
10-12	13			
13-15	15			
16-18	18			
19-21	14			
22-24	14			
25-27	10			
28-30	8			

Time to Finalize Contract

Interpretation

- Consider where the distribution is centered
- Analyze the variation and spread of the data
- Look at the shape of the distribution
- Consider these factors in the context of targets

Using data to measure improvement

- How will you know that change is improvement?
- When will you know that the improvement is real?

Selecting the right tool

- Run Charts
- Control Charts
- Histograms

Run Chart

What does it do?

- Monitors performance over time
- Allows for comparison of measurement before and after implementation of an intervention
- Tracks information for predicting trends

How to do it?

- Select the indicator to be measured
- Collect the data
- Create the graph
- Plot the data

Participation in Employer Sponsored Physical Activity Programs

Number of employees participating in two sessions

--- Percent of employees participating in two sessions

Interpretation

- Look for obvious patterns or trends
- Consider the position of the average value
- Do not assume that all variation is important

Control Charts

WIC No Show Rates - Isanti County Public Health

Control limits,

What does it do?

- Detect and monitor process variation over time
- Distinguish between special and common cause of variation
- Serves as a tool for ongoing control of a process
- Helps improve a process to perform consistently and predictably

How to do it?

- Select the process to be charted
- Determine sampling method and plan
- Initiate data collection
- Calculate the appropriate statistics (standard deviation, mean, median)
- Calculate the control limits
- Construct the Control Chart

Ogrinc G et al. Qual Saf Health Care 2008;17:i13-i32

Interpretation

- Analyze the data relative to the control limits
- Distinguish between Common causes and Special causes of variation.
 - Common cause: variation results from factors inherent to the process. This variation can only be affected by changing that process.
 - Special cause: variation caused by external influences such as human errors, unplanned events, or unusual occurrences. Special causes should be eliminated.
- The amount of variation from special causes is usually much greater than it is for common causes.

Driving to work each day

- Average time: 14 minutes
- Common causes of variation:
 - Miss or make the traffic lights
 - Amount of traffic on the road
 - Weather wind, sun, rain

Driving to work each day

- Special causes of variation:
 - Flat tire
 - Parade or protest on your route
 - Speeding ticket

Interpretation

- A special cause is indicated when
- One or more points are outside the UCL or LCL
- Two out of three successive values are: a) on the same side of the centerline, and b) more than two standard deviations from the centerline.
- Eight or more successive values fall on the same side of the centerline.
- Six or more values in a row are steadily increasing or decreasing.

Data Tracking and Display

- Integrate data collection into daily routine whenever possible
- Simple graphs and charts can help tell your story a picture can be worth a thousand words
- Keep your audience in mind
- Consider your message
- Label clearly

Kim McCoy Office of Performance Improvement Minnesota Department of Health 651-201-3877 Kim.mccoy@state.mn.us