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Toxicological Summary for: Perfluorooctane sulfonate 
CAS:  45298-90-6 (anion) 

1763-23-1 (acid) 
29081-56-9 (ammonium salt) 
70225-14-8 (diethanolamine salt) 
2795-39-3 (potassium salt) 
29457-72-5 (lithium salt) 

DTXSID: DTXSID80108992 

Synonyms: PFOS, Perfluorooctane sulfonic acid 

In 2024, the Minnesota Department of Health (MDH) completed a re-evaluation of PFOS that 
focused on epidemiological data. Recent reviews from the European Food Safety Authority, 
California Environmental Protection Agency, US Environmental Protection Agency, and National 
Academies of Sciences, Engineering, and Medicine were utilized as resources. Many toxicity 
studies in laboratory animals also exist; however, the points of departure are significantly higher 
than those identified in epidemiology studies. MDH also conducted a literature search for 
epidemiological studies published between 2021 and December 2022, which focused on 
potential sensitive endpoints (e.g., development, immune, thyroid), to capture information that 
postdated the reviews by the agencies listed above.   

Short-term, Subchronic, and Chronic Noncancer Health-Based Value (nHBV) = 0.0023 μg/L 
(equivalent to 2.3 ng/L or ppt)* 

*Due to the highly bioaccumulative nature of PFOS, serum concentrations are the most appropriate dose metric. 
PFOS has a half-life of approximately 2.7 years, and the bioaccumulated levels within women of reproductive age 
can be passed on to fetuses and infants through placental and breastmilk transfer. The standard equation used to 
derive health-based values (HBVs) is not adequate to address the bioaccumulative nature nor the maternal 
transfer of PFOS. Since 2017, a single PFOS HBV for all durations has been derived using a toxicokinetic (TK) model 
developed by MDH (Goeden 2019), which assesses a formula-fed infant scenario as well as a breastfed infant 
scenario. The TK model accounts for the bioaccumulation and maternal transfer of PFOS and more accurately 
represents real-world exposure scenarios. MDH typically calculates HBVs at the part per billion level with the final 
concentration rounded to one significant digit. However, serum concentrations are impacted by changes in water 
concentrations at the part per trillion (ppt) level. As a result, the PFOS HBV is expressed with two significant digits.  
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 Reference Serum Concentration: POD/Total UF = 7.7/3 = 2.6 ng/mL (human)  
  This serum level was developed using population-

based data and should not be used for clinical 
assessment or interpreting serum levels in individuals. 

 Source of toxicity value: Determined by MDH in 2024 
 Point of Departure (POD): 7.7 ng/mL (equivalent to µg/L) serum concentration 

(US EPA 2023a,b), BMDL5% for decreased birth weight 
from (Wikström 2020) 

 Dose Adjustment Factor (DAF):  Not applicable (POD is based on human serum level)  
 Human Equivalent Dose (HED): Not applicable (POD is based on human serum level) 
 Total uncertainty factor (UF): 3 
 Uncertainty factor allocation: A database UF of 3 was applied to account for 

remaining database uncertainties regarding potential 
adverse effects at or near the serum POD 
concentration (e.g., immune effects, liver effects, 
thyroid effects).  

  An UF for human toxicodynamic (TD) variability was 
not applied because the POD is based on a sensitive 
life stage (i.e., neonates).  

  Differences in human TK were determined to be 
adequately addressed through the exposure scenario 
and parameter values selected for use in the TK 
model.#  

 Critical effect(s): Decreased birth weight 
 Co-critical effect(s): Decreased antibody titers in children, increased 

cholesterol 
 Additivity endpoint(s): Developmental, Hepatic (liver) system, Immune 

system 

#The POD is based on birth weights paired with maternal serum levels at median gestation age 10 weeks. Very little 
information is available regarding PFOS half-life in infants; the half-life used in the TK model is based on a 
population (age 4-80 years of age) residing in a community with contaminated water (Li 2022). To evaluate the 
potential impact of TK variability, an upper-bounding scenario, in which all model parameters were set to upper 
percentile values, was evaluated. The maternal, peak infant, and lifetime steady-state serum levels produced by 
the upper-bounding scenario were <3-fold higher than MDH’s selected Reasonable Maximum Exposure (RME) 
scenario. Since the upper-bounding scenario is considered worst-case and is very unlikely to represent a realistic 
scenario, the incorporation of an UF to address human TK variability was considered unnecessary. MDH’s RME 
model parameter values used to derive the noncancer water guidance is considered adequately protective of the 
general population. 

Toxicokinetic Model Description (Goeden 2019): 
Serum concentrations can be calculated from the dose and clearance rate using the following 
equation:  

 
Where: 

Clearance Rate = Volume of Distribution (L/kg body weight) x (Ln2/half-life in days) 
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Two exposure scenarios were examined: 1) an infant fed with formula reconstituted with 
contaminated water starting at birth and continuing ingestion of contaminated water 
throughout life; and 2) an infant exclusively breastfed for 12 months, followed by drinking 
contaminated water. In both scenarios, the simulated individuals began life with a pre-existing 
body burden through placental transfer. The serum concentration of the mother was calculated 
to be at steady state at the time of delivery, using the equation presented above and a time-
weighted average (TWA) 95th percentile intake rate from birth to 30 years of age (sufficient 
time to attain steady-state). 
 
Consistent with MDH methodology, a 95th percentile water and upper percentile (2 standard 
deviations above mean) breastmilk intake rates were used along with central tendency 
estimates for half-life, placental transfer, and breastmilk transfer. Breastmilk concentrations are 
calculated by multiplying the maternal serum concentration by a PFOS breastmilk transfer 
factor. For the breastfed exposure scenario, a one-year period of breastfeeding is used as 
representative of an RME scenario. 
 
Daily post-elimination serum concentrations were calculated as:  
 

 
Where:  

Vd = volume of distribution 
BW = body weight 
e-k = represents clearance  

 
Note: MDH has made several improvements to the TK model published in 2019 (Goeden 2019), including the 
following: 

• The PFOS mass transferred to the infant is now subtracted from the maternal steady-state 
concentration on day 0 (the day of delivery). 

• The daily calculation of the infant’s serum concentration is now fully mass-based by adjusting both 
the current day as well as the previous day’s intake by the current day’s body weight.  

• Maternal lactation was phased in over the first four days of lactation based on data from Neville et al. 
(1991). 

• Water intakes, breastmilk intakes, and body weights were updated with more current information. 
• Chemical-specific parameter values (i.e., clearance, half-life, placental transfer, breastmilk transfer, 

and volume of distribution) were updated to include literature information up to December 2022. 

Summary of TK Model Parameter Values Used to Derive Non-Cancer HBV for PFOS 

Model Parameter Value Used  

 

Half-life (t½) 

Central Tendency = 996 days (2.73 years) (Mean value from (Li 2022) 
The TK model estimates serum levels from birth to approximately 50 years of age. 
Critical life-stage is <4 years of age for which serum half-life information is not available. 
The overall mean was used for the RME scenario. A 95th percentile half-life value of 4.75 
years was used in the upper-bounding scenario evaluation. 

 

Placental transfer 

Central Tendency = 0.39 (mean of mean values from 27 studies) 
The mean upper percentile value (0.74) was selected as an upper-end value for the 
upper-bounding scenario evaluation. 



 
PFOS - 4 

Model Parameter Value Used  

 

Breastmilk transfer 

Central Tendency = 0.03 (95th upper confidence limit (UCL) of the mean from 8 studies). 
Validation testing of model infant serum predictions indicated that use of the overall 
mean of the 8 studies (0.020) resulted in underestimating breastfed infant serum levels 
whereas the 95th UCL did not.  A value of 0.065 was used as representative of an upper-
end value for the upper-bounding scenario evaluation.  

Breastmilk Intake 
Rate (mL/kg-day) 
and corresponding 
Body Weight (kg) 

Upper Percentile intake for exclusively1 breastfed infants ((US EPA 2019), Table 15-1). 
Body weight at birth was set at 3.38 kg (Donahue 2010). Remaining body weights (kg) 
were calculated from data presented in US EPA’s Table 15-1 for each age group (i.e., 
mL/day ÷ mL/kg-day):  

Age Group      Intake Rate (mL/kg-d)       Body Weight (kg) 

>Birth to <1 month 220 4.3 

1 to < 3 months 190 5.2 

3 to < 6 months 150 6.7 

6 to < 12 months 130 7.7 

Duration (months) 
of Breastfeeding 

Upper percentile = 12 months (Breastfeeding Report Card for 2022 (CDC 2022)) reporting 
that nearly 70 percent of mothers in Minnesota report breastfeeding at six months, with 
36.5 percent still exclusively breastfeeding at six months.  

Water Intake Rate 
(mL/kg-day) 

 

Upper Percentile Intake = Formula-fed infants (up to 2 years old, Table 3-5); for >2 years 
of age values (Table 3-1); and for lactating women (Table 3-3) (US EPA 2019) were used. 
Body weights (kg) were calculated from data presented in the aforementioned EPA 
tables (i.e., mL/day ÷ mL/kg-day): 

Age Group Intake Rate (mL/kg-d) Body Weight (kg) 

<1 month 240 3.6 

1 to < 3 months 290 3.8 

3 to < 6 months 186 7.0 

6 to < 12 months 151 8.9 

1 to < 2 years 119 10.5 

2 to < 3 years 67 13.4 

3 to < 6 years 45 18.6 

6 to < 11 years 41   30.7 

11 to < 16 years 31 56.8 

16 to < 21 years 31 71.4 

21 to < 30 years 47 72.5 

30 to < 40 years 44 74.5 

40 to < 50 years 43 78.5 

50 to < 60 years    42 80.7 

For calculation of maternal serum concentration at time of delivery, a time-weighted 
average water intake rate was calculated from birth to 30 years of age, resulting in a 95th 
percentile water intake rate of 48 mL/kg-day.  
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Model Parameter Value Used  

Volume of 
Distribution (L/kg) 

Central Tendency = 0.56 (calculated from human clearance rate of 0.39 mL/kg-d 
(California EPA Office of Environmental Health Hazard Assessment 2023)) and the mean 
half-life of 996 days (Li 2022):  

CR ÷ (Ln2/half-life) = Vd 

0.39 mL/kg-d ÷ (Ln 2/996 d) = 560 mL/kg or rounded to 0.56 L/kg 
1Note: Exclusively breastfed as defined by (US EPA 2019) refers to infants whose sole source of milk is breastmilk and not 
formula. Exclusively breastfed infants in the studies underlying these USEPA estimates were not excluded from other foods, 
typically after six months. This definition differs from other sources, which may define exclusive breastfeeding as breastmilk 
being the only source of nourishment (solid or liquid).  

A relative source contribution factor (RSC) is incorporated into the derivation of HBV values to 
account for exposure sources other than drinking water. MDH utilizes the US EPA 2000 
Exposure Decision Tree process to derive appropriate RSCs. The default duration-specific RSCs 
(0.5, 0.2, and 0.2 for short-term, subchronic and chronic, respectively) are based on the 
magnitude of contribution of non-drinking water exposures that occur during the relevant 
exposure duration (Minnesota Department of Health (MDH) 2008). However, in the case of 
PFOS, application of an RSC needs to account for the long elimination half-life, such that a 
person’s serum concentration at any given age/duration is not only the result of current or 
recent exposures but also from years past and/or maternal transfer.  

Serum concentrations are the best measure of cumulative exposure for PFOS and can be used 
in place of the reference dose in the Exposure Decision Tree process. Biomonitoring results for 
the general public reported in the most recent National Report on Human Exposure to 
Environmental Chemicals (CDC 2021) can be used to represent non-water exposures for older 
children and adults. The reference serum concentration is 2.6 ng/mL. Both the geometric mean 
(4.25 ng/mL) and the 95th percentile (14.6 ng/mL) PFOS serum concentration from the most 
recently available National Report exceed the reference serum concentration. Based on 
placental transfer data, newborn infants would have PFOS body burdens approximately half 
that of their mothers. Even at low levels of exposure, PFOS would accumulate in women of 
reproductive age. Studies assessing young infants (e.g., <6 months of age) who are exclusively 
breastfed exhibit serum levels that are similar to or slightly higher than their mothers (e.g., 
(Fromme 2010), (Gyllenhammar 2018)). Consequently, the RSC is set at the floor value of 20% 
for all life stages.  

As mentioned above, two RME scenarios were examined: 1) an infant fed formula reconstituted 
with contaminated water starting at birth and continuing consumption of contaminated water 
throughout life; and 2) an infant exclusively breastfed for 12 months by a chronically-exposed 
mother, followed by consumption of contaminated water throughout life.  

For the formula-fed infant, the water concentration that maintains a serum concentration 
attributable to drinking water below an RSC of 20% throughout life is 0.0043 µg/L (equivalent to 
4.3 ng/L or ppt). The infant peak is below the 20% RSC line as the maternal serum concentration 
was the limiting factor in the formula-fed scenario (Figure 1). 



 
PFOS - 6 

Figure 1. MDH RME Formula-fed Infant Scenario PFOS Serum Concentration at Water 
Concentration 0.0043 ug/L 

 

A sharp decrease in the formula-fed infant serum levels between the 1 to < 3 month and 3 to <6 
months is noted. The formula-fed infant water intake drops from 290 to 186 mL/kg-d as body 
weight increases from 3.8 to 7 kg across the same time period. 

Applying this water concentration (4.3 ng/L) in the context of a breast-fed infant results in peak 
infant serum concentrations that significantly exceed the RSC of 20%. In order to maintain a 
serum concentration at or below an RSC of 20% for the breast-fed infant scenario, the water 
concentration should not exceed 0.0023 µg/L (or 2.3 ng/L or ppt) (Figure 2). 
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Figure 2. MDH RME Breastfed Infant Scenario PFOS Serum Concentration at Water 
Concentration 0.0023 µg/L  

 

Due to bioaccumulation in the mother and subsequent transfer to breastmilk, the breast-fed 
infant exposure scenario produces the lower PFOS water concentration. To ensure protection 
of all segments of the population, the final noncancer HBV for PFOS is set at 2.3 ng/L (ppt).  

Cancer Health-Based Value (cHBV) = 0.0076 µg/L (7.6 ng/L or ppt) 

(Additional Lifetime Cancer Risk) x (Conversion Factor) 
[(SF x ADAF<2 yr x IR<2yr x 2) + (SF x ADAF2-<16 yr x IR2-<16yr x 14) + (SF x ADAF16+ yr x IR16+yr x 54)] / 70 

   =                        (1E-5) x (1000 µg/mg)           
[(13 x 10* x 0.155 L/kg-d**x 2) + (13 x 3* x 0.040 L/kg-d**x 14) + (13 x 1* x 0.042 L/kg-d**x 54)] / 70 

= 0.0076 µg/L (same as 7.6 ng/L or ppt)  

*Age-dependent adjustment factor (ADAF) and Lifetime Adjustment Factor: MDH 2008, Section IV.E.2. ADAFs were 
maintained because the animals from the critical cancer study did not have early-life exposures to PFOS. 
**Intake Rate: MDH 2008, Section IV.E.2. and US EPA 2019, Exposure Factors Handbook, Tables 3-1, 3-3, and 3-5. 

 Cancer classification: Likely to be carcinogenic to humans (US EPA 
2023a,b) (MDH 2023); Presents a carcinogenic 
hazard (CalEPA Office of Environmental Health 
Hazard Assessment 2023); Group 2B (possibly 
carcinogenic to humans) (IARC 2023) 

 Slope factor (SF): 13 per mg/kg-day (combined hepatocellular 
adenomas and carcinomas in female rats) (US EPA 
2023a,b); tumor data from (Butenhoff 2012) 

 Source of cancer slope factor (SF): POD of 19.8 mg/L  from (US EPA 2023a,b) 
converted to 13 per mg/kg-d using a clearance rate 
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of 0.39 mL/kg-d (CalEPA Office of Environmental 
Health Hazard Assessment 2023). [Note: EPA 
calculated a slope factor of of 39.5 per mg/kg-d 
from this POD using a clearance rate of 0.128 
mL/kg-d]. 

 Tumor site(s): Liver 

Volatile: No  

Summary of Guidance Value History: 

A chronic nHBV of 1 µg/L was first derived in 2002. A revised chronic nHBV of 0.3 µg/L was 
derived in 2007 and promulgated as a noncancer HRL (nHRL) in 2009. In 2017, MDH derived a 
revised nHBV (applicable to all durations) of 0.027 µg/L. In 2018, MDH revised the nHBV 
(applicable to all durations) to 0.015 µg/L. In 2020 MDH incorporated updated water intake 
rates (US EPA 2019). Using the updated intake rates did not change the HBV value. The 2024 
nHBV of 0.0023 µg/L (2.3 ng/L) is lower than previous values as the result of: 1) utilizing 
epidemiological data as the basis for the POD; and 2) updating the toxicokinetic model, 
including more recent data on placental and breastmilk transfer. The 2024 cancer HBV of 
0.0076 µg/L (7.6 ng/L) is a new value and MDH has revised their cancer classification to “likely 
to be carcinogenic”.  

Summary of toxicity testing for health effects identified in the Health Standards Statute 
(144.0751): 

Even if testing for a specific health effect was not conducted for this chemical, information about that effect might 
be available from studies conducted for other purposes. MDH has considered the following information in 
developing health protective guidance. 

 Endocrine Immunotoxicity Development Reproductive Neurotoxicity 

Tested for 
specific effect? 

Yes Yes Yes Yes Yes 

Effects 
observed? Yes1 Yes2 Yes3 Yes4 Yes5 

Comments on extent of testing or effects: 
[Note: MDH conducted a re-evaluation that focused on epidemiological data and sensitive health endpoints.] 
1 Evidence for endocrine effects in humans following PFOS exposure is largely based on 
increased TSH (thyroid stimulating hormone) and T3 (triiodothyronine) in adults and T4 
(thyroxine) in children. However, findings in epidemiology studies were inconsistent, likely due 
in part to diurnal variations, differential effects across genders and age groups, timing of 
sampling, and limited number of studies. (US EPA 2023a,b) considers the current level of 
evidence suggestive but not indicative of adverse endocrine effects due to PFOS exposure due 
to the uncertainty in results. A database uncertainty factor has been incorporated into the 
reference serum level to reflect the need for more data regarding thyroid effects.  

Studies in laboratory animals have demonstrated clear and consistent alterations in serum 
thyroid hormone levels, increased thyroid gland weight, and increased follicular cell 



 
PFOS - 9 

hypertrophy in the thyroid gland. Previous MDH guidance was based, in part, on thyroid effects 
in animals. 
2 In humans, it is widely accepted that PFOS exposure is likely associated with reduced antibody 
response, especially in infants and children. Immune effects are listed as a co-critical additivity 
endpoint based on a vaccine response study in young children. Additionally, there is some 
evidence for increases in asthma and respiratory infections. 

In animal models, there is consistent evidence of decreased antibody response, decreased 
spleen and thymus weight, and alterations in immune cell function after PFOS exposure. 
3 In humans, it is widely accepted that decreased birth weight is likely associated with maternal 
PFOS serum levels. This likely association is supported by additional epidemiological evidence of 
related effects such as decreased birth length and postnatal growth. Low birth weight is the 
basis of the reference serum concentration.  

Among the animal studies, decreased postnatal growth leading to developmental effects (e.g., 
lower pup body weight, delayed eye opening) have been observed. 
4 The evidence for male reproductive effects in humans is limited and largely based on 
suggestive associations between PFOS exposure and testosterone levels in male children and 
adults and decreased anogenital distance in children. Considerable uncertainties in these 
associations exist due to inconsistencies across studies and the limited number of studies 
available.  

The evidence for female reproductive effects in humans is limited and largely based on 
suggestive associations between PFOS exposure and increased odds of preeclampsia. 
Considerable uncertainties in these associations exist due to inconsistencies across studies and 
the limited number of available studies.  

Among the animal studies, there is evidence for decreased testicular and epididymal weight, for 
decreased sperm count, and for hormonal changes in pups, and for increased neonatal 
mortality. 
5 There is inconsistent evidence for PFOS exposure and neurotoxicity in humans. Most studies 
focused on neurodevelopment of infants and toddlers; across studies, both negative and 
positive associations on various developmental assessments were reported. 

In a small number of available animal studies, there is limited evidence suggesting 
neurobehavioral alterations from PFOS exposure. 

Resources Consulted During Review: 

1. Abraham K, Mielke H, Fromme H, Völkel W, Menzel J, Peiser M, Zepp F, Willich SN, 
Weikert C. (2020). "Internal exposure to perfluoroalkyl substances (PFASs) and biological 
markers in 101 healthy 1-year-old children: associations between levels of 
perfluorooctanoic acid (PFOA) and vaccine response." Arch Toxicol. 94: 2131-2147. 

2. Appel M, Forsthuber M, Ramos R, Windhalm R, Granitzer S, Uhl M, Hengstschläger M, 
Stamm T, Gundacker C. (2022). "The transplacental transfer efficiency of per- and 
polyfluoroalkyl substances (PFAS): a first metaanalysis." J Toxicol Environ Health B Crit 
Rev. 25(1): 23-42. 

3. ATSDR – Agency for Toxic Substances and Disease Registry. (2021). Toxicological Profile 
for Perfluoroalkyls. https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf 

https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf


 
PFOS - 10 

4. Batzella E, Jeddi MZ, Pitter G, Russo F, Fletcher T, Canova C. (2022). "Associations 
between Mixture of Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed 
Adult Community in the Veneto Region." Int J Environ Res Public Health. 19: 12421. 

5. Bell EM, Yeung EH, Ma W, Kannan K, Sundaram R, Smarr MM, Buck Louis GM. (2018). 
"Concentrations of endocrine disrupting chemicals in newborn blood spots and infant 
outcomes in the upstate KIDS study." Environ Int. 121: 232-239. 

6. Borghese MM, Liang CL, Owen J, Fisher M. (2022). "Individual and mixture associations 
of perfluoroalkyl substances on liver function biomarkers in the Canadian Health 
Measures Survey." Environ Health. 21(1): 85. 

7. Budtz-Jørgensen E, Grandjean P. (2018). "Application of benchmark analysis for mixed 
contaminant exposures: Mutual adjustment of perfluoroalkylate substances associated 
with immunotoxicity." PLoS One. 13(10): e0205388. 

8. Butenhoff JL, Chang S-C, Olsen GW, Thomford PJ. (2012). "Chronic dietary toxicity and 
carcinogenicity study with potassium perfluorooctane sulfonate in Sprague Dawley 
rats." Toxicology. 293: 1-15. 

9. Cai A, Portengen L, Govarts E, Rodriguez Martin L, Schoeters G, Legler J, Vermeulen R, 
Lenters V, Remy S. (2023). "Prenatal exposure to persistent organic pollutants and 
changes in infant growth and childhood growth trajectories." Chemosphere. 314: 
137695. 

10. Cakmak S, Lukina A, Karthikeyan S, Atlas E, Dales R. (2022). "The association between 
blood PFAS concentrations and clinical biochemical measures of organ function and 
metabolism in participants of the Canadian Health Measures Survey (CHMS)." Sci Total 
Environ. 827: 153900. 

11. California EPA Office of Environmental Health Hazard Assessment. (2021). 
Perfluorooctanoic Acid and Perfluorooctane Sulfonic Acid in Drinking Water (Public 
Review Draft). 

12. California EPA Office of Environmental Health Hazard Assessment. (2023). Public Health 
Goals, Second Public Review Draft: Perfluorooctanoic Acid and Perfluorooctane Sulfonic 
Acid in Drinking Water. 

13. CDC – Centers for Disease Control and Prevention (2022). “Breastfeeding Report Card – 
United States, 2022.” https://www.cdc.gov/breastfeeding/data/reportcard.htm 

14. Chang C-J, Barr D, Ryan P, Panuwet P, Smarr MM, Liu K, Kannan K, Yakimavets V, Tan Y, 
Ly V, Marsit CJ, Jones DP, Corwin EJ, Dunlop AL, Liang D. (2022). "Per- and 
polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and 
fetal growth in African American women: A meet-in-the-middle approach." Environ Int. 
158: 106964. 

15. Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M, Zhang S, Zhang Y, Bi J, 
Yao J, He M. (2022). "Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid 
Levels: A Pilot Study." Environ Sci Technol. 56: 17039-17051. 

16. Chiu WA, Lynch MT, Lay CR, Antezana A, Malek P, Sokolinski S, Rogers RD. (2022). 
"Bayesian Estimation of Human Population Toxicokinetics of PFOA, PFOS, PFHxS, and 
PFNA from Studies of Contaminated Drinking Water." Environ Health Perspect. 130(12). 

17. Chu C, Zhou Y, Li QQ, Bloom MS, Lin S, Yu Y-J, Chen D, Yu H-Y, Hu L-W, Yang B-Y, Zeng X-
W, Dong G-H. (2020). "Are perfluorooctane sulfonate alternatives safer? New insights 
from a birth cohort study." Environ Int. 135: 105365. 

18. Coperchini F, Croce L, Ricci G, Magri F, Rotondi M, Imbriani M, Chiovato L. (2021). 
"Thyroid Disrupting Effects of Old and New Generation PFAS." Front Endocrinol. 11: 
612320. 

https://www.cdc.gov/breastfeeding/data/reportcard.htm


 
PFOS - 11 

19. Costello E, Rock S, Stratakis N, Eckel SP, Walker DI, Valvi D, Cserbik D, Jenkins T, 
Xanthakos SA, Kohli R, Sisley S, Vasiliou V, La Merrill MA, Rosen H, Conti DV, McConnell 
R, Chatzi L. (2022). "Exposure to Per- and Polyfluoroalkyl Substances and Markers of 
Liver Injury: A Systematic Review and Meta-Analysis." Environ Health Perspect. 130(4): 
46001. 

20. Crawford L, Halperin SA, Dzierlenga MW, Skidmore B, Linakis MW, Nakagawa S, 
Longnecker MP. (2023). "Systematic review and meta-analysis of epidemiologic data on 
vaccine response in relation to exposure to five principal perfluoroalkyl substances." 
Environ Int. 172: 107734. 

21. Darrow LA, Groth AC, Winquist A, Shin H-M, Bartell SM, Steenland K. (2016). "Modeled 
Perfluorooctanoic Acid (PFOA) Exposure and Liver Function in a Mid-Ohio Valley 
Community." Environ Health Perspect. 124(8): 1227-1233. 

22. Derakhshan A, Kortenkamp A, Shu H, Broeren MAC, Lindh CH, Peeters RP, Bornehag C-G, 
Demeneix B, Korevaar TIM. (2022). "Association of per- and polyfluoroalkyl substances 
with thyroid homeostasis during pregnancy in the SELMA study." Environ Int. 167: 
107420. 

23. Donahue SMA, Kleinman KP, Gillman MW, Oken E. (2010). "Trends in birth weight and 
gestational length among singleton term births in the United States: 1990-2005." Obstet 
Gynecol. 115((2 (pt. 1)): 357-364. 

24. Dong Z, Wang H, Yu YY, Li YB, Naidu R, Liu Y. (2019). "Using 2003-2014 U.S. NHANES data 
to determine the associations between per- and polyfluoroalkyl substances and 
cholesterol: Trend and implications." Ecotoxicol Environ Saf. 173: 461-468. 

25. Dunder L, Lind PM, Salihovic S, Stubleski J, Kärrman A, Lind L. (2022). "Changes in plasma 
levels of per- and polyfluoroalkyl substances (PFAS) are associated with changes in 
plasma lipids - A longitudinal study over 10 years." Environ Res. 211: 112903. 

26. EFSA - European Food Safety Authority (2018). Panel on Contaminants in the Food 
Chain. "Risk to human health related to the presence of perfluorooctane sulfonic acid 
and perfluorooctanoic acid in food." EFSA J. 16(12): e05194. 

27. EFSA - European Food Safety Authority (2020). Panel on Contaminants in the Food 
Chain. "Risk to human health related to the presence of perfluoroalkyl substances in 
food." EFSA J. 18(9): e06223. 

28. Fan X, Tang S, Wang Y, Fan W, Ben Y, Naidu R, Dong Z. (2022). "Global Exposure to Per- 
and Polyfluoroalkyl Substances and Associated Burden of Low Birthweight." Environ Sci 
Technol. 56: 4282-4294. 

29. Frisbee SJ, Brooks AP Jr, Maher A, Flensborg P, Arnold S, Fletcher T, Steenland K, 
Shankar A, Knox SS, Pollard C, Halverson JA, Vieira VM, Jin C, Leyden KM, Ducatman AM. 
(2009). "The C8 Health Project: Design, Methods, and Participants." Environ Health 
Perspect. 117: 1873-1882. 

30. Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F, 
Hannibal I, Genzel-Boroviczény O, Koletzko B, Völkel W. (2010). "Pre- and Postnatal 
Exposure to Perfluorinated Compounds (PFCs)." Environ Sci Technol. 44: 7123-7129. 

31. Gallo V, Giovanni L, Genser B, Lopez-Espinosa M-J, Frisbee SJ, Karlsson L, Ducatman AM, 
Fletcher T. (2012). "Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate 
(PFOS) Concentrations and Liver Function Biomarkers in a Population with Elevated 
PFOA Exposure." Environ Health Perspect. 120: 655-660. 

32. Goeden HM, Greene CW, Jacobus JA. (2019). "A transgenerational toxicokinetic model 
and its use in derivation of Minnesota PFOA water guidance." J Expo Sci Environ 
Epidemiol. 29(2): 183-195. 



 
PFOS - 12 

33. Goodrich JA, Walker D, Lin X, Wang H, Lim T, McConnell R, Conti DV, Chatzi L, Setiawan 
VW. (2022). "Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma 
in a multiethnic cohort." JHEP Rep. 4(10): 100550. 

34. Guo J, Zhang J, Wang Z, Zhang L, Qi X, Zhang Y, Chang X, Wu C, Zhou Z. (2021). 
"Umbilical cord serum perfluoroalkyl substance mixtures in relation to thyroid function 
of newborns: Findings from Sheyang Mini Birth Cohort Study." Chemosphere. 273: 
129664. 

35. Gyllenhammar I, Benskin JP, Sandblom O, Berger U, Ahrens L, Lignell S, Wiberg K, Glynn 
A. (2018). "Perfluoroalkyl Acids (PFAAs) in Serum from 2−4-Month-Old Infants: Influence 
of Maternal Serum Concentration, Gestational Age, Breast-Feeding, and Contaminated 
Drinking Water." Environ Sci Technol. 52: 7101-7110. 

36. Hall SM, Zhang S, Hoffman K, Miranda ML, Stapleton HM. (2022). "Concentrations of 
per- and polyfluoroalkyl substances (PFAS) in human placental tissues and associations 
with birth outcomes." Chemosphere. 295: 133873. 

37. Harris MH, Rifas-Shiman SL, Calafat AM, Ye X, Mora AM, Webster TF, Oken E, Sagiv SK. 
(2017). "Predictors of Per- and Polyfluoroalkyl Substance (PFAS) Plasma Concentrations 
in 6−10 Year Old American Children." Environ Sci Technol. 51: 5193-5204.  

38. IARC – International Agency for Research on Cancer. (2023). Volume 135: 
Perfluorooctanoic acid and perfluorooctanesulfonic acid. 
https://monographs.iarc.who.int/news-events/volume-135-perfluorooctanoic-acid-and-
perfluorooctanesulfonic-acid/ 

39. ITRC – Interstate Technology and Regulatory Council. (Last Update October 2022). 
"Interstate Technology and Regulatory Council Regulations, Guidance, and Advisories. 
Section 4 Tables (Excel)." Retrieved 11/21/2022 from https://pfas-1.itrcweb.org/fact-
sheets/. 

40. Jensen RC, Glintborg D, Timmermann CAG, Nielsen F, Boye H, Madsen JB, Bilenberg N, 
Grandjean P, Jensen TK, Andersen MS. (2022). "Higher free thyroxine associated with 
PFAS exposure in first trimester. The Odense Child Cohort." Environ Research. 212: 
113492. 

41. Jia J, Duan L, Dong B, Dong Q, Liu Y, Yu W, Yang L, Shi H. (2023). "Perfluoroalkyl and 
polyfluoroalkyl substances in cord serum of newborns and their potential factors." 
Chemosphere. 313: 137525. 

42. Jiang H, Liu H, Liu G, Yu J, Liu N, Jin Y, Bi Y, Wang H. (2022). "Associations between 
Polyfluoroalkyl Substances Exposure and Breast Cancer: A Meta-Analysis." Toxics. 10: 
318. 

43. Jones LE, Ghassabian A, Lawrence DA, Sundaram R, Yeung E, Kannan K, Bell EM. (2022). 
"Exposure to perfluoroalkyl substances and neonatal immunoglobulin profiles in the 
upstate KIDS study (2008 - 2010)." Environ Pollut. 308: 119656. 

44. Kaur K, Lesseur C, Chen L, Andra SS, Narasimhan S, Pulivarthi D, Midya V, Ma Y, Ibroci E, 
Gigase F, Lieber M, Lieb W, Janevic T, DeWitte LD, Bergink V, Rommel A-S, Chen J. 
(2023). "Cross-sectional associations of maternal PFAS exposure on SARS-CoV-2 IgG 
antibody levels during pregnancy." Environ Res. 219: 115067. 

45. Kim O-J, Kim S, Park EY, Oh JK, Jung SK, Park S, Hong S, Jeon HL, Kim H-J, Park B, Park B, 
Kim S, Kim B. (2023). "Exposure to serum perfluoroalkyl substances and biomarkers of 
liver function: The Korean national environmental health survey 2015–2017." 
Chemosphere. 322: 138208. 

https://monographs.iarc.who.int/news-events/volume-135-perfluorooctanoic-acid-and-perfluorooctanesulfonic-acid/
https://monographs.iarc.who.int/news-events/volume-135-perfluorooctanoic-acid-and-perfluorooctanesulfonic-acid/


 
PFOS - 13 

46. Li A, Hou J, Fu J, Wang Y, Hu Y, Zhuang T, Li M, Song M, Jiang G. (2023). "Association 
between serum levels of TSH and free T4 and per- and polyfluoroalkyl compounds 
concentrations in pregnant women." J Environ Sci. 124: 11-18. 

47. Li H, Hammarstrand S, Midberg B, Xu Y, Li Y, Olsson DS, Fletcher T, Jakobsson K, 
Andersson EM. (2022). "Cancer incidence in a Swedish cohort with high exposure to 
perfluoroalkyl substances in drinking water." Environ Res. 204: 112217. 

48. Li Q-Q, Liu J-J, Su F, Zhang Y-T, Wu L-Y, Chu C, Zhou Y, Shen X, Xiong S, Geiger SD, Qian 
ZM, McMillin SE, Dong G-H, Zeng X-W. (2022). "Chlorinated Polyfluorinated Ether 
Sulfonates and Thyroid Hormone Levels in Adults: Isomers of C8 Health Project in 
China." Environ Sci Technol.  56: 6152-6161. 

49. Li Y, Andersson A, Xu Y, Pineda D, Nilsson CA, Lindh CH, Jakobsson K, Fletcher T. (2022). 
"Determinants of serum half-lives for linear and branched perfluoroalkyl substances 
after long-term high exposure - A study in Ronneby, Sweden." Environ Int. 163: 107198. 

50. Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, Jakobsson K. (2018). "Half-lives of 
PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water." Occup 
Environ Med. 75: 46-51. 

51. Lin PID, Cardenas A, Hauser R, Gold DR, Kleinman KP, Hivert M-F, Fleisch AF, Calafat AM, 
Webster TF, Horton ES, Oken E. (2019). "Per- and polyfluoroalkyl substances and blood 
lipid levels in pre-diabetic adults—longitudinal analysis of the diabetes prevention 
program outcomes study." Environ Int. 129: 343-353. 

52. Liu Y, Li A, An Q, Liu K, Zheng P, Yin S, Liu W. (2022). "Prenatal and postnatal transfer of 
perfluoroalkyl substances from mothers to their offspring." Crit Rev Env Sci Tec. 52(14): 
2010-2537. 

53. MacDonald AM, Gabos S, Braakman S, Cheperdak L, Lee B, Hrudey SE, Le XC, Li X-F, 
Mandal R, Martin JW, Schopflocher D, Lyon ME, Cheung P-Y, Ackah F, Graydon JA, 
Reichert M, Lyon AW, Jarrell J, Benadé G, Charlton C, Huang D, Bennett MJ, Kinniburgh 
DW. (2022). "Maternal and child biomonitoring strategies and levels of exposure in 
western Canada during the past seventeen years: The Alberta Biomonitoring Program: 
2005–2021." Int J Hyg Environ Health. 244: 113990. 

54. MDH – Minnesota Department of Health. (2008). "Statement of Need and 
Reasonableness (SONAR), July 11, 2008. Support document relating to Health Risk Limits 
for Groundwater Rules." from https://www.leg.state.mn.us/archive/sonar/SONAR-
03733.pdf#page=2 

55. MDH - Minnesota Department of Health. (2017). Background Document: Toxicokinetic 
Model for PFOS and PFOA and Its Use in the Derivation of Human Health-based Water 
Guidance Values. 

56. National Academies of Sciences Engineering and Medicine (2022). Guidance on PFAS 
Exposure, Testing, and Clinical Follow-Up., The National Academies Press. 

57. Nelson J. (2016). Personal communication regarding MDH MN (East Metro) PFC 
biomonitoring project data based on June 9, 2015 Meeting Agenda and Materials for the 
Advisory Panel to the Environmental Health Tracking and Biomonitoring Program. 
https://www.health.state.mn.us/communities/environment/biomonitoring/docs/pfc20
15communityreport.pdf.  

58. Nian M, Li Q-Q, Bloom M, Qian ZM, Syberg KM, Vaughn MG, Wang S-Q, Wei Q, Zeeshan 
M, Gurram N, Chu C, Wang J, Tian Y-P, Hu L-W, Liu K-K, Yang B-Y, Liu R-Q, Feng D, Zeng 
X-W, Dong G-H. (2019). "Liver function biomarkers disorder is associated with exposure 
to perfluoroalkyl acids in adults: Isomers of C8 Health Project in China." Environ Res. 
172: 81-88. 

https://www.leg.state.mn.us/archive/sonar/SONAR-03733.pdf#page=2
https://www.leg.state.mn.us/archive/sonar/SONAR-03733.pdf#page=2
https://www.health.state.mn.us/communities/environment/biomonitoring/docs/pfc2015communityreport.pdf
https://www.health.state.mn.us/communities/environment/biomonitoring/docs/pfc2015communityreport.pdf


 
PFOS - 14 

59. Nilsson S, Smurthwaite K, Aylward LL, Kay M, Toms LM, King L, Marrington S, Barnes C, 
Kirk MD, Mueller JF, Bräunig J. (2022). "Serum concentration trends and apparent half-
lives of per- and polyfluoroalkyl substances (PFAS) in Australian firefighters." Int J Hyg 
Environ Health. 246: 114040. 

60. Oh J, Schmidt RJ, Tancredi D, Calafat AM, Roa DL, Hertz-Picciotto I, Shin H-M. (2021). 
"Prenatal exposure to per- and polyfluoroalkyl substances and cognitive development in 
infancy and toddlerhood." Environ Res. 196: 110939. 

61. Oh J, Shin H-M, Kannan K, Busgang SA, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, 
Bennett DH. (2022). "Childhood exposure to per- and polyfluoroalkyl substances and 
neurodevelopment in the CHARGE case-control study." Environ Res. 215(Pt 2): 114322. 

62. Pan Z, Guo Y, Zhou Q, Wang Q, Pan S, Xu S, Li L. (2023). "Perfluoroalkyl substance 
exposure is associated with asthma and innate immune cell count in US adolescents 
stratified by sex." Environ Sci Pollut Res Int. 30(18): 52535-52548. 

63. Pizzurro DM, Seeley M, Kerper LE, Beck BD. (2019). "Interspecies differences in 
perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria." 
Regul Toxicol Pharmacol. 106: 239-250. 

64. Porter AK, Kleinschmidt SE, Andres KL, Reusch CN, Krisko RM, Taiwo OA, Olsen GW, 
Longnecker MP. (2022). "Antibody response to COVID-19 vaccines among workers with 
a wide range of exposure to per- and polyfluoroalkyl substances." Environ Int. 169: 
107537. 

65. Sagiv SK, Rifas-Shiman SL, Fleisch AF, Webster TF, Calafat AM, Ye X, Gillman MW, Oken 
E. (2018). "Early-Pregnancy Plasma Concentrations of Perfluoroalkyl Substances and 
Birth Outcomes in Project Viva: Confounded by Pregnancy Hemodynamics?" Am J 
Epidemiol. 187(4): 793-802. 

66. Schecter A, Malik-Bass N, Calafat AM, Kato K, Colacino JA, Gent TL, Hynan LS, Harris TR, 
Malla S, Birnbaum L. (2012). "Polyfluoroalkyl Compounds in Texas Children from Birth 
through 12 Years of Age." Environ Health Perspect. 120: 590-594. 

67. Sevelsted A, Gürdeniz G, Rago D, Pedersen CET, Lasky-Su JA, Checa A, Zhang P, 
Wheelock CE, Normann SS, Kristensen DM, Rasmussen MA, Schullehner J, Sdougkou K, 
Martin JW, Stokholm J, Bønnelykke K, Bisgaard H, Chawes B. (2022). "Effect of 
perfluoroalkyl exposure in pregnancy and infancy on intrauterine and childhood growth 
and anthropometry. Sub study from COPSAC2010 birth cohort." EBioMedicine. 83: 
104236. 

68. Shearer JJ, Callahan CL, Calafat AM, Huang WY, Jones RR, Sabbisetti VS, Freedman ND, 
Sampson JN, Silverman DT, Purdue MP, Hofmann JN. (2021). "Serum Concentrations of 
Per- and Polyfluoroalkyl Substances and Risk of Renal Cell Carcinoma." J Natl Cancer 
Inst. 113(5): 580-587. 

69. Shen C, Ding J, Xu C, Zhang L, Liu S, Tian Y. (2022). "Perfluoroalkyl Mixture Exposure in 
Relation to Fetal Growth: Potential Roles of Maternal Characteristics and Associations 
with Birth Outcomes." Toxics. 10(11): 650. 

70. Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Ye X, Dabelea D. (2017). 
"Perfluoroalkyl Substances during Pregnancy and Offspring Weight and Adiposity at 
Birth: Examining Mediation by Maternal Fasting Glucose in the Healthy Start Study." 
Environ Health Perspect. 125(6): 067016. 

71. Starling AP, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, Haug LS, 
Eggesbø M, Becher G, Sabaredzovic A, Thomsen C, Wilson RE, Travlos GS, Hoppin JA, 
Baird DD, Longnecker MP. (2014). "Perfluoroalkyl substances and lipid concentrations in 



 
PFOS - 15 

plasma during pregnancy among women in the Norwegian Mother and Child Cohort 
Study." Environ Int. 62: 104-112. 

72. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. (2009). "Association of 
Perfluorooctanoic Acid and Perfluorooctane Sulfonate With Serum Lipids Among Adults 
Living Near a Chemical Plant." Am J Epidemiol. 170(10): 1268-1278. 

73. Thomford P. (2002). 104-Week Dietary Chronic Toxicity and Carcinogenicity Study with 
Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; T-6295) in Rats. Final Report. 
Volumes I-IX. Covance Study No. 6329-183. 

74. Thomsen C, Haug LS, Stigum H, Frøshaug M, Broadwell SL, Becher G. (2010). "Changes in 
Concentrations of Perfluorinated Compounds, Polybrominated Diphenyl Ethers, and 
Polychlorinated Biphenyls in Norwegian Breast-Milk during Twelve Months of 
Lactation." Environ Sci Technol. 44: 9550-9556. 

75. Tian Y, Zhou Q, Zhang L, Li W, Yin S, Li F, Xu C. (2023). "In utero exposure to per-
/polyfluoroalkyl substances (PFASs): Preeclampsia in pregnancy and low birth weight for 
neonates." Chemosphere. 313: 137490. 

76. Timmermann CAG, Pedersen HS, Weihe P, Bjerregaard P, Nielsen F, Heilmann C, 
Grandjean P. (2022). "Concentrations of tetanus and diphtheria antibodies in vaccinated 
Greenlandic children aged 7 - 12 years exposed to marine pollutants, a cross sectional 
study." Environ Res. 203: 111712. 

77. US EPA. (2016a). US Environmental Protection Agency - Office of Water. Health Effects 
Support Document for Perfluorooctane Sulfonate (PFOS). Retrieved May 19, 2016, from 
https://www.epa.gov/sites/production/files/2016-05/documents/hesd_pfos_final-
plain.pdf. 

78. US EPA. (2016b). US Environmental Protection Agency - Office of Water. Drinking Water 
Health Advisory for Perfluorooctane Sulfonate (PFOS). Retrieved May 19, 2016, from 
https://www.epa.gov/sites/production/files/2016-
05/documents/pfos_health_advisory_final-plain.pdf. 

79. US EPA. (2019). Exposure Factors Handbook. Chapter 3 – Ingestion of Water and Other 
Select Liquids. https://www.epa.gov/expobox/about-exposure-factors-handbook 

80. US EPA. (2000). Methodology for Deriving Ambient Water Quality Criteria for the 
Protection of Human Health (2000). 

81. US EPA (2021). External Peer Review Draft: Proposed Approaches to the Derivation of a 
Draft Maximum Contaminant Level Goal for Perfluorooctane Sulfonic Acid (PFOS) 
(CASRN 1763-23-1) in Drinking Water.  

82. US EPA (2022). Interim Drinking Water Health Advisory: Perfluorooctane Sulfonic Acid 
(PFOS) CASRN 1763-23-1. 

83. US EPA. (2023a). Public Comment Draft. Toxicity Assessment and Proposed Maximum 
Contaminant Level Goal for Perfluorooctane Sulfonic Acid (PFOS) in Drinking Water. 

84. US EPA (2023b). Public Comment Draft Appendix: Toxicity Assessment and Proposed 
Maximum Contaminant Level Goal for Perfluorooctane Sulfonic Acid (PFOS) in Drinking 
Water. 

85. Verner MA, Ngueta G, Jensen ET, Fromme H, Völkel W, Nygaard UC, Granum B, 
Longnecker MP. (2016). "A Simple Pharmacokinetic Model of Prenatal and Postnatal 
Exposure to Perfluoroalkyl Substances (PFASs)." Environ Sci Technol. 50: 978-986. 

86. Wang Z, Luo J, Zhang Y, Li J, Zhang J, Tian Y, Gao Y. (2023). "High maternal glucose 
exacerbates the association between prenatal per- and polyfluoroalkyl substance 
exposure and reduced birth weight." Sci Total Environ. 858: 160130. 

https://www.epa.gov/sites/production/files/2016-05/documents/hesd_pfos_final-plain.pdf
https://www.epa.gov/sites/production/files/2016-05/documents/hesd_pfos_final-plain.pdf
https://www.epa.gov/sites/production/files/2016-05/documents/pfos_health_advisory_final-plain.pdf
https://www.epa.gov/sites/production/files/2016-05/documents/pfos_health_advisory_final-plain.pdf
https://www.epa.gov/expobox/about-exposure-factors-handbook


 
PFOS - 16 

87. Wikström S, Lin PI, Lindh CH, Shu H, Bornehag CG. (2020). "Maternal serum levels of 
perfluoroalkyl substances in early pregnancy and offspring birth weight." Pediatr Res. 
87: 1093-1099. 

88. Wu B, Pan Y, Li Z, Wang J, Ji S, Zhao F, Chang X, Qu Y, Zhu Y, Xie L, Li Y, Zhang Z, Song H, 
Hu X, Qiu Y, Zheng X, Zhang W, Yang Y, Gu H, Li F, Cai J, Zhu Y, Cai Z, Ji JS, Lv Y, Dai J, Shi 
X. (2023). "Serum per- and polyfluoroalkyl substances and abnormal lipid metabolism: A 
nationally representative cross-sectional study." Environ Int. 172: 107779. 

89. Wu XM, Bennett DH, Calafat AM, Kato K, Stryner M, Andersen E, Moran RE, Tancredi DJ, 
Tulve NS, Hertz-Picciotto I. (2015). "Serum concentrations of perfluorinated compounds 
(PFC) among selected populations of children and adults in California." Environ Res. 136: 
264-273. 

90. Xie W, Zhong W, Appenzeller BMR, Zhang J, Junaid M, Xu N. (2022). "Nexus between 
perfluoroalkyl compounds (PFCs) and human thyroid dysfunction: A systematic review 
evidenced from laboratory investigations and epidemiological studies." Crit Rev Env Sci 
Tec. 51(21): 2485-2530. 

91. Yang Z, Liu HY, Yang QY, Chen X, Li W, Leng J, Tang NJ. (2022). "Associations between 
exposure to perfluoroalkyl substances and birth outcomes: A meta-analysis." 
Chemosphere. 291: 132909. 

92. Yao H, Fu Y, Weng X, Zeng Z, Tan Y, Wu X, Zeng H, Yang Z, Li Y, Liang H, Wu Y, Wen L, Jing 
C. (2023). "The Association between Prenatal Per- and Polyfluoroalkyl Substances 
Exposure and Neurobehavioral Problems in Offspring: A Meta-Analysis." Int J Environ 
Res Public Health. 20(3): 1668. 

93. Yao Q, Gao Y, Zhang Y, Qin K, Liew Z, TianY. (2021). "Associations of paternal and 
maternal per- and polyfluoroalkyl substances exposure with cord serum reproductive 
hormones, placental steroidogenic enzyme and birth weight." Chemosphere. 285: 
131521. 

94. Ye X, Kato K, Wong LY, Jia T, Kalathil A, Latremouille J, Calafat AM. (2018). "Per- and 
polyfluoroalkyl substances in sera from children 3 to 11 years of age participating in the 
National Health and Nutrition Examination Survey 2013-2014." Int J Hyg Environ Health. 
221: 9-16. 

95. Zhang B, Wang Z, Zhang J, Dai Y, Feng C, Lin Y, Zhang L, Guo J, Qi X, Chang X, Lu D, Wu C, 
Zhou Z. (2023). "Prenatal perfluoroalkyl substances exposure and neurodevelopment in 
toddlers: Findings from SMBCS." Chemosphere. 313: 137587. 

96. Zhang L, Liang J, Gao A. (2023). "Contact to perfluoroalkyl substances and thyroid health 
effects: A meta-analysis directing on pregnancy." Chemosphere. 315: 137748. 


	Toxicological Summary for: Perfluorooctane sulfonate
	Short-term, Subchronic, and Chronic Noncancer Health-Based Value (nHBV) = 0.0023 μg/L (equivalent to 2.3 ng/L or ppt)*
	Cancer Health-Based Value (cHBV) = 0.0076 µg/L (7.6 ng/L or ppt)
	Summary of Guidance Value History:
	Summary of toxicity testing for health effects identified in the Health Standards Statute (144.0751):
	Comments on extent of testing or effects:
	Resources Consulted During Review:


